
Distributed Artificial Life toolkit

Specification

Vlad Catalin Mereuta





Distributed Artificial Life toolkit: Specification
by Vlad Catalin Mereuta





Chapter 1. The project

The problem
The field of agent based social simulation is relatively new and lacks the abun-
dance of tools and packages available in other fields. This is exactly the problem
this project will attempt to address by creating a flexible artificial life simulation
environment, capable of distributing the processing requirements onto several
computers.

The toolkit is to be designed to accommodate a specific class of simulations,
namely the ones in which the agents are computationally intensive (neural net-
works, or complex processing rules). There are some such toolkits already in exis-
tence; the most prominent and well developed one is SWARM1. However, none of
them are capable of running the simulation in a distributed manner and most of
them are bound to one or two specific programming languages (Objective C and
Java for SWARM). If an experimenter needed to use any other language than the
one used initially for developing the toolkit a complete port would be required.

The project objectives

Brief overview
The main objective of the project is creating a toolkit which addresses the prob-
lems described above. The result should be provably more efficient on multiple
machines than on a single machine, given the same set of data. The architec-
ture should also have several levels of abstraction, allowing for different levels
of customisation for particular experiments and should allow a relative language
independence.

In order to achieve these objectives, the following main components will have to
be integrated in the toolkit.

a map editor

This will provide the necessary functionality for creating and editing the 2-
dimensional maps which provide the environment for the experiments.

a server

One or more instances of a program which keeps track of the current sta-
tus of the map, the location of the agents and the interactions in between
agents and their environment. The server should be able to supply all the
’sensory’ inputs for any agent at any given time. It should also be able to
decide whether actions that an agent would attempt to accomplish are valid
or not (eg. an agent should not be allowed to move outside the map bound-
aries or in a location occupied by another solid object, etc). The server only
holds the information about the agents. The agents themselves are allocated
for processing purposes to one or more clients

a processing client

There will be several instances of the client program running (on one or more
machines). Each client will handle the processing for one or more agents.
Each agent is just the implementation of an algorithm which decides on one
of the available actions based on the ‘sensory inputs’ (for example, the map
server should be able to supply the eye-sight and smell information for an

5



Chapter 1. The project

agent; based on this the agent program can decide, say, to eat some food or
run away from an enemy). None of the senses or available actions are to be
hard-coded - this would be limiting for the scope of the toolkit. Instead a
generic and flexible framework is to be provided, which should render the
task of adding these features relatively easy.

an observer

This program will use data provided by the server to render a graphical dis-
play of the artificial environment. This program should also provide support
for run time data extraction and hooks for adding extra functionality.

one or more examples

These will contain simple or more complex artificial life simulations using
the components above

The communication in between all these components is to be done via TCP/IP.
The data transferred is encapsulated in XML. Conducting all the communication
over TCP/IP should provide machine independence. Using XML for encapsulat-
ing data should provide a clear and language independent format for transferring
data, a feature which should prove very important in the case of a port to a new
language.

The objectives
The objectives of this project can be split into three major groups:

Core objectives

The minimum of the objectives that need to be reached in order for the
project to be successful

Primary objectives

Although not vital for the success of the project, these objectives are desir-
able. They cannot be attained without the core objectives being completed
first

Secondary objectives

These objectives shall be completed depending on the available time. None
of them is vital for the success of the project.

The detailed objective list is as follows:

• Core objectives

1. Detailed design document.

2. Communication protocols. (specifying at least all the basic messages that
can appear)

3. Artificial Life server

a. a threaded server which can accept connection from clients

b. Map loading

c. Client authentication (the server should be able to accept, acknowl-
edge and ’use’ clients)

d. Work allocation (the server should be able to dispatch processing
tasks to the clients - most likely each client will receive a pack of

6



Chapter 1. The project

agents which will have to process. The server will keep track of
where each agent is located

e. Observer support (server should provide data necessary for the
observer)

4. Client

a. authentication support (the client should be able to login into a
server)

b. agent framework (a generic set of classes or procedures which pro-
vide the placeholder for the decision algorithm mentioned before;
this is to be extended/implemented differently for each Artificial
Life experiment, according to the needs of the experimenter)

5. Observer

a. authentication support (the observer should be able to make itself
known to the server and request data)

b. basic display and recording functionality

• Primary objectives

1. map editor for AL world maps

2. Sample agent, able to demonstrate the functionality of the toolkit

3. Architecture performance testing on at least three machines (given an
agent which has with fake complex processing demands, the simulation
should run physically quicker when more than one machine is used, thus
demonstrating the utility of this project.)

4. find processing/communication boundary (depending on the machines
the program is running on, using more than one machine for a small
number of simple agent can be slower, due to penalty incurred by the
communication overhead). Given a sample agent and a required number
of agents for the simulation, the toolkit should be able to suggest at least
whether it is better to run the simulation on one or more machines.

• Secondary objectives

1. Load balancing of work units in relation to processing power

2. Client improvements and fine-tuning

3. Complex (planning and memory) social agent for demonstration pur-
poses

4. Run experiment on a large network

5. More experiments

Methods
Except for the map editor which can be created independently from the rest of
the project all the goals (in the core and primary sections) are listed in the order

7



Chapter 1. The project

which they should be accomplished; there is little or no room for changing the
order given above. The secondary goals can be accomplished in any order.

Project type
This project is best categorised as a development project. The core objective of de-
veloping a flexible distributed framework for agent based artificial life simula-
tions is a development goal. Specific algorithms and custom software will have
to be developed in order to achieve this set of goals.

Timetable

Time Objective

summer holiday;
week 1,2

map editor; initial research

week 3 specification; more research and draft basic design

weeks 4-6 complete detailed specification/design document

week 7 communication protocols

weeks 8-9 initial version of the server

weeks 9-10 client

week 10 progress report

holiday observer, module integration

week 14 complete primary objectives

week 15 finish documentation for primary and core objectives

weeks 16-17 debugging, documentation

week 18 complex agents, more experiments

week 19 compile existing documentation into presentation

week 20 project presentation

week 20-22 integrate latest experimental results into the report

week 22 final report

Notes
1. http://www.swarm.org

8



Chapter 2. Resources

Resources required

Hardware resources
Will be making use of at least two powerful (700MHz+) x86 machines. Will pos-
sibly require use of several machines in the Linux Lab toward the end of the
project.

Software resources
What follows is a list of probable software resources required:

• Operating systems: Linux

• Text processing

• DocBook XML 4.1

• LaTeX

• Compilers/interpreters

• GNU C++ compiler

• SUN JDK

• Python 2.1 interpreter (possibly)

• Development libraries (all GPL unless otherwise mentioned)

• Threading/networking C++ library (specifics are being researched; main can-
didates are Common C++ and CoreLinux++)

• Xalan/Xerces C++ and Java for XML processing

• Possibly other libraries for genetic algorithms (galib, ga2), neural networks
(inanna)

Use of non-departmental equipment
I shall make use of non-departmental equipment in this project. In order to pre-
vent the loss of data, the following backup strategies will be implemented:

Versioning

Both the sources for the software and the LaTeX and DocBook sources for
the documentation are kept under CVS control. This enables easy recovery
from mistakes. The CVS tree is kept on a different machine from the devel-
opment one; this way, the most recent stable version of the work is kept on
two different machines

9



Chapter 2. Resources

Local backups

The CVS tree is backed up nightly on removable media, which is kept in a
different place (albeit in the same residence) from the main computer.

Off-site backups

The entire CVS tree is mirrored every night into my DCS account. This is
done automatically. Also, a weekly snapshot of the sources is uploaded onto
the project website (hosted by Freeserve)

10


	Chapter 1. The project
	The problem
	The project objectives
	Brief overview
	The objectives

	Methods
	Project type
	Timetable

	Chapter 2. Resources
	Resources required
	Hardware resources
	Software resources

	Use of non-departmental equipment


